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Abstract. A theory is developed for calculating the normal incidence polar Kerr effect in
multilayered systems that are optically isotropic but magnetically inhomogeneous in a direction
parallel to the direction of propagation of the probing radiation. Specific examples are presented
for well known limiting cases and situations that may be commonly found in multilayered systems
that are associated with magneto-optic recording media. A particular practical example is given
for the Co–Pd multilayer system where the consequences of inhomogeneously polarized Pd layers
can be seen directly from in situ experimental data and interpreted using the theoretical analysis.
Finally, an analysis is given for the optimization of layer thicknesses for the Co–Pd system that
leads to structures that have the optimum intrinsic magneto-optic parameter that will ensure the
best performance in magneto-optic readout systems.

1. Introduction

There is increasing interest in magnetic multilayers for magneto-optic recording that utilize
the advantages of materials that possess increased magneto-optic performance by virtue of the
combination and mutual proximity of materials that may or may not be intrinsically magnetic at
normal temperatures. The increased or altered activity can be the result of new magneto-optic
transitions that may be a consequence of quantum-well structures [1–5] or may be the result of
non-magnetic media becoming polarized when in proximity to ferromagnetic media, as occurs
at the interfaces of multilayered structures [6]. In the former case prediction of absolute values
of fundamental material parameters and the subsequent behaviour of layered systems is not
easy. In the latter case, the prediction of new magneto-optic effects is equally difficult and
the calculation of the measurable Kerr or Faraday effects is complicated by the fact that the
magnetization distribution may be non-uniform within a particular layer.

In this paper a theoretical analysis is given for dealing with the calculation of the polar
magneto-optical Kerr effect [7] in inhomogeneously magnetized multilayers where the material
parameters are known together with their variation in a direction perpendicular to the planes
containing the film interfaces. A number of specific cases are treated as examples and the results
of a recent experiment on Co–Pd multilayers [8] are summarized that illustrate the existence of
inhomogeneous magnetization in Pd and its effect on the evolving magneto-optical Kerr effect
of this system. From these data the basic material parameters have been determined and used
to calculate the optimum structures that will lead to maximized magneto-optic performance
for the purposes of information readout in magneto-optic recording.
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2. Theoretical analysis

The calculation of magneto-optical properties of multilayered systems can, in principle, always
be performed using the well known 4 × 4 characteristic matrix method for dealing with
multilayered systems [9]. Where each layer is homogeneous, this is a preferred method of
dealing with linear magneto-optical calculations and is quite general in that all the principal
magneto-optic orientations (polar, longitudinal and transverse [7]) can be treated. In situations
where the individual layers are themselves inhomogeneous the calculation may still be carried
out though, in such cases, each layer may have to be subdivided into a large number of elemental
layers, each being different for the rest but homogeneous. Such an approach makes the
calculation rather tedious and time consuming. An alternative matrix approach was developed
earlier [10] where the characteristic matrix for an inhomogeneously magnetized layer was
derived and could be applied identically to the usual 4 × 4 matrix approach. However, the
method is not simple and requires considerable computation in forming the specific matrix for
a layer of particular magnetization distribution.

Apart from the complex and tedious nature of such calculations, physical insight into the
magneto-optic behaviour of inhomogeneously magnetized systems is difficult to appreciate
without simple analytical expressions that are able to throw light on how the magneto-optical
effects are produced and vary in such systems.

In the following analysis a relatively simple formulation is derived for dealing with the
normal incidence polar Kerr effect, specifically for any multilayered system provided that its
optical properties are approximately uniform throughout. The later requirement may, at first,
seem excessively restrictive but in practice it is a condition that is often satisfied. This is
particularly the case in next generation magneto-optic recording media such as Co–Pd and
Co–Pt [11–13].

The theoretical framework is based around two fundamental principles. The first is the
principle of the superposition of linear magneto-optical effects [14]. This states that ‘The
magneto-optically induced electric field components resulting from an interaction of elec-
tromagnetic radiation with a magnetic multilayered system are linear superpositions of the
complex magneto-optic fields due to individual magnetic layers of the system where the fields
associated with each are calculated on the basis that the rest of the system is non-magnetic’. The
second is the application of the concept of differential reflectance applied to the calculation of
the magneto-optic Kerr coefficient k [15]. It is well known that, at normal incidence, for the po-
lar Kerr configuration where the magnetization is along the surface normal, radiation may prop-
agate in the medium as two circularly polarized modes that have opposite senses (right handed
and left handed) of rotation of the electric field vector. The effective refractive indices that the
material presents for these two modes are designated n+ and n− where n± = n(1±Q/2) [15].
The parameters n and Q are the complex isotropic refractive index and magneto-optic Voigt Q-
parameter, respectively, that appear in the skew-symmetric permittivity tensor for a gyroelectric
medium [7]. It is well known and easy to show for any system that if the amplitude reflectances
corresponding to these two modes are r+ and r− the resulting Kerr coefficient k is given by [15]

k = i
δr

2
(1)

where δr = (r+ − r−) and is the differential system reflectance referred of course to the two
refractive indices n±, or rather the difference between them, δn (= n+ − n− = nQ). In cases
that satisfy k � r , where r (= (r+ + r−)/2) is the isotropic amplitude reflectance, the complex
Kerr rotation θ̂ is given by

θ̂ = θ + iε = k

r
. (2)



Inhomogeneously magnetized systems 7737

0 

1 

2 

3 

4 
z 

r  

12r  

23r
 

34r
 

0r
 

1r

2r  
M 

3d

2d

1d

3r
 

Figure 1. Reflectance amplitude coefficients associated with a three-layer system.

The problem that must be solved is the calculation of k and r for a situation where the
Q-parameter is spatially dependent and where the isotropic refractive index is constant through-
out the system.

Such a calculation is performed with respect to figure 1, showing a single system separated
into three layers. The middle layer is regarded as uniformly magnetized in the positive
z-direction according to the preferred sign convention for magneto-optic effects that has been
defined previously [16]. With reference to figure 1 the Fresnel amplitude reflection coefficients
at the four interfaces are given by the well known expression [17]

rm = (nm − nm+1)/(nm + nm+1) m = 0 → 3 (3)

where n0 and n4 are the indices of the incident and substrate media, respectively. In addition,
n1 = n3 = n and n2 = n±, the latter depending on the magneto-optical mode. The internal
reflectances, taking into account the multiple reflections between layers, are obtained from the
reiterative reflectance formula [18] given by

rm,m+1 = rm + rm+1,m+2 ei2ρm+1

1 + rmrm+1,m+2 eiρm+1
(4)

where

ρm = 2πnmdm

λ
(5)

is the complex phase thickness associated with the mth layer and, at the semi-infinite substrate
interface, r3,4 = r3. λ is the free space wavelength. It is now necessary to determine the
differential reflectances at each of these boundaries and ultimately therefore at the uppermost
boundary of the system, that correspond to the differential index change δn of the magnetic
layer. Clearly the differential reflectance at the substrate interface δr3 is zero since r3 is
independent of the modal indices. For the next interface the differential reflectance is obtained
from

δr2,3 = ∂r2,3

∂r2
δr2 +

∂r2,3

∂ρ3
δρ3 (6)

where

∂r2,3

∂r2
= 1 − r2

3 ei4ρ3 . (7)
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Since layer three is independent of the modal indices, δρ3 is also zero. Moreover, it is easy to
show from equation (3) and the definition of n±, that δr2 = Q/2. Hence,

δr2,3 = (1 − r2
3 ei4ρm)Q/2. (8)

Similarly, for the next layer,

δr1,2 = ∂r1,2

∂r1
δr1 +

∂r1,2

∂r2,3
δr2,3 +

∂r1,2

∂ρ2
δρ2 (9)

where
∂r1,2

∂r1
= 1 − r2

2,3 ei4ρ2

∂r1,2

∂r2,3
= ei2ρ2

∂r1,2

∂ρ2
= i2r3 ei2(ρ2+ρ3).

Now, using equation (8), and since δr1 = −δr2 = −Q/2 and δρ2 = Qρm,

δr1,2 = −(1 − r2
3 ei4(ρ2+ρ3))Q/2 + (1 − r2

3 ei4ρ3) ei2ρ2Q/2 + i2r3ρ2Q ei2(ρ2+ρ3). (10)

Finally, for the incident interface the differential reflectance of the whole system is

δr = ∂r

∂r1,2
δr1,2 (11)

where
∂r

∂r1,2
= ei2ρ1(1 − r2

0 )/(1 + r0r1,2 ei2ρ1)2. (12)

The subscripts on δr have been omitted, since we are dealing with the system reflectance r . All
other differential terms that might be attached to equation (11) are zero for reasons identical
to those given above. Thus from equation (10)

δr = −Q

2
ei2ρ1

1 − r2
0

(1 + r0r1,2 ei2ρ1)2

×[(1 − r2
3 ei4(ρ2+ρ3)) − (1 − r2

3 ei4ρ3) ei2ρ2 − i4r3ρ2 ei2(ρ2+ρ3)]. (13)

From equations (1) and (13) and using the following identities, where it is assumed the incident
medium is air,

ρ = ρ1 + ρ2 + ρ3

1 − r2
0 = 4n/(1 + n)2

it follows that the Kerr coefficient due to the buried magnetic layer is given by

k = − inQ

(1 + n)2
ei2ρ1

1

(1 + r0r3 ei2ρ)2

×[(1 − r2
3 ei4(ρ2+ρ3)) − (1 − r2

3 ei4ρ3) ei2ρ2 − i4r3ρ2 ei2(ρ2+ρ3)]. (14)

At this point it is worth reminding the reader that the Q-parameter may be spatially dependent
and that, in order to apply the principal of superposition of magneto-optic effects, it is
appropriate to consider the middle layer to be an elemental layer of thickness δz buried at
a depth z in a film system of total thickness d. Consequently, allowing d2 → δz, k → δk,
d1 = z, d3 = d − z, and for convenience letting α = i4πn/λ, equation (14) may be written,
to first order in δz,

δk = B0 eαzQ[1 + B1 e−2αz + B2 e−αz]αδz (15)
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where

B0 = in

(1 + n)2(1 + r0r3 ei2ρ)2
(16)

B1 = r2
3 e2αd (17)

B2 = 2r3 eαd . (18)

Equation (15) is the important fundamental equation that allows one to deal with
inhomogeneously magnetized systems and is used to perform integral calculations where the
magneto-optic Q-parameter is any function Q(z) of the z-co-ordinate. The general problem
is therefore solved by integrating the expression

k =
∫

dk =
∫

B0 eαzQ(z)[1 + B1 e−2αz + B2 e−αz]αdz (19)

over the thickness of the film structure. To illustrate the usefulness and validity of the expression
a number of simple cases are considered below.

2.1. Case (I). Semi-infinite medium of homogeneous Q

The case of a homogeneously magnetized, infinitely thick layer with air as the incident medium
is well known and can be derived from the integration of equation (15). In this situation d → ∞
and hence B1 = B2 = 0 and B0 = in/(1 + n)2. Consequently, the Kerr coefficient k is given
by

k =
∫ ∞

0
αQB0 eαz dz = −QB0 = −inQ/(1 + n)2. (20)

In this simple case the Fresnel amplitude reflection coefficient is r = (1 − n)/(1 + n) and
results in the well known expression for complex Kerr rotation of

θ̂ = k/r = −inQ/(1 − n2). (21)

2.2. Case (II). Finite film having homogeneous Q

For a film of finite thickness the B coefficients, given by equations (16)–(18), are all finite,
with r0 and r3 obtained from equation (3). It follows that

k = B0αQ

∫ d0

0
[eαz + B1 e−αz + B2]dz = −B0Q[1 − eαd0 − B1(1 − eαd0) − B2αd0]. (22)

In this situation the complex Kerr rotation is given by equation (2), using k from equation (22)
with the amplitude reflectance given by the simple reiterative formula for a single, optically
homogeneous film.

2.3. Case (III). Inhomogeneous semi-infinite film with Q(z) = Q e−βz

In this case we deal with a semi-infinite medium whose magnetization, perpendicular to the
reflecting surface, decays exponentially with distance from the incident interface with a decay
parameter β. Here Q in equation (20) is replaced by Q(z) = Q e−βz. The result is remarkably
simple and written

k =
∫

dk =
∫ ∞

0
αQB0 e−βz eαz dz = − inQ

(1 + n)2

α

(α − β)
. (23)
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Figure 2. Functional dependence of the magnitude of the magneto-optic parameter for an N -period
multilayer where one layer type is homogeneously magnetized.

2.4. Case (IV). Homogeneously magnetized multilayer system

Attention is now drawn to a multilayer system consisting of N periods of two layers (the
bi-layer) where the first is homogeneously magnetized with Q-parameter Q1. The second is
non-magnetic. The situation is illustrated in figure 2. The layer thicknesses are d1 and d2. For
the mth period the associated Kerr coefficient is

�km,1 = αB0

∫ zm+1

zm

Q1(e
αz + B1 e−αz + B2) dz

= − B0Q1[(1 − eαd1) eαzm − B1(1 − eαd1) e−αzm + B2αd1]. (24)

Consequently, the Kerr coefficient for N periods is obtained by summation over m and is
written

k1 = −B0Q1[(1 − eαd1)

m=N∑
m=1

eαzm − B1(1 − e−αd1)

m=N∑
m=1

e−αzm − B2Nαd1]. (25)

Writing

f ± =
m=N∑
m=1

e±αzm = (1 − e±αNp)/(1 − e±αp) (26)

where the period p = d1 + d2, it follows that the Kerr coefficient is given by

k1 = −B0Q1[(1 − eαd1)f + − B1(1 − e−αd1)f − − B2Nαd1]. (27)

It should be noted that equation (27) has the same form as equation (22) for N = 1 and may be
used to obtain the complex Kerr rotation from equation (2) where the reflectance is obtained
from the reiterative reflectance formula.

2.5. Case (V). Inhomogeneously magnetized multilayer system

As a final case we consider a multilayer system that, while specific in the magnetization and
Q-parameter profile, is nevertheless of practical importance. The multilayer is constructed
from N bi-periods of two materials. The first, of thickness d1, is assumed homogeneous and
has a magneto-optic parameter Q1. The other, of thickness d2, is inhomogeneous with a profile
that decays from each interface and is described by the function

Q2(z
′) = Q2

cosh β(d2/2 − z′)
cosh βd2/2

. (28)

It should be noted that the prime added to the z-coordinate in equation (28) is to remind the
reader that the distance is measured with respect to the beginning of each layer labelled 2.
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Figure 4. Functional dependence of the magnitude of the magneto-optic parameter for an N -period
multilayer with homogeneous and inhomogeneous magnetic layers.

Recent experiments on CoPd have shown that the moments of Pd atoms are a maximum
at the interface and decay exponentially with distance [8]. Where a Pd layer is sandwiched
between two Co layers the moment of the Pd has a maximum fixed value at each interface
and, in the limit of a thick layer, must decay exponentially from each of the interfaces.
The function above satisfies this requirement in that for βd2 
 1 the function becomes
Q2(z

′) = Q2 e−βz′
or = Q2 e+β(z′−d2), depending on which interface is considered. The form

of the function is shown in figure 3 for a fixed d2 = 1 but varying values of the decay constant β.
At first sight, the task of determining the Kerr coefficient for this rather complicated

system seems tedious but it must be appreciated that half of the necessary formulation has
been derived and is given by equation (27). It only remains to determine the contribution to the
Kerr coefficient made by the inhomogeneous layers. In this case, with reference to figure 4,
for the mth period we have

�km,2 = αB0

∫ zm+1

zm

Q2
cosh β(d2/2 − z′)

cosh βd2/2
(eαz + B1 e−αz + B2) dz. (29)



7742 R Atkinson

After integration of equation (29) the result is again summed over m for the N periods. The
result is

k2 = −αB01

{
Q+

[
eαd1f +

γ
(1 − eγ d2) − B1

e−αd1f −

δ
(1 − e−δd2) − B2

N

β
(1 − e−βd2)

]

+Q−
[

eαd1f +

δ
(1 − eδd2) − B1

e−αd1f −

γ
(1 − e−γ d2) + B2

N

β
(1 − eβd2)

]}
(30)

where γ = α − β, δ = α + β and

Q± = Q2 e±βd2/2

2 cosh βd2/2
. (31)

Equation (30) represents the contribution of the inhomogeneous layers to the total Kerr
component k that, for the completed system is given, using equation (27), by

k = k1 + k2. (32)

Hence, the complex Kerr rotation is

θ̂ = θ + iε = k

r
= (k1 + k2)

(
r0 + r3 ei2ρ

1 + r0r3 ei2ρ

)−1

. (33)

The theoretical analysis outlined above is convenient for dealing with several types of multilayer
system and can be used to understand their detailed magneto-optical behaviour. In addition,
the formulations may be used to optimize multilayer performance, provided the fundamental
material parameters can be measured or are known. To illustrate the value of the method and to
demonstrate the reality of inhomogeneous magnetization distributions within magneto-optic
media the results of an in situ magneto-optic measurement of the dynamic growth during the
deposition of a Co–Pd system are summarized and used to obtain the fundamental data that
are then used to determine layer thicknesses that optimize magneto-optic performance.

3. Experimental example of Co–Pd

In situ ellipsometry and Kerr polarimetry, at a wavelength of 633 nm, have been used to
follow the continuous evolution of the optical and magneto-optical properties of multiple
layers of Co and Pd during their growth. Films were sputter deposited onto a Pd buffer
layer on glass substrates up to a maximum of ten bi-layer periods according to the scheme
glass/Pd(10)10×(0.3Co/3Pd) (nm). Magnetic hysteresis measurements taken during the
deposition process consistently showed strong perpendicular anisotropy at all stages of film
growth following the deposition of a single monolayer of Co. It is inappropriate to describe all
of the results in full since a full analysis of the extensive data produced during the experiment
can be found elsewhere [8]. However, in figure 5 we show the magneto-optic Kerr rotation
and ellipticity measured during the deposition of the first three bi-layers. There are several
important points that should be noted concerning these curves and the associated optical results.

(1) The ellipsometric data collected throughout the process indicated that the refractive index
remained constant during the deposition of the Co and Pd layers and was determined to
be n = (2.33 + i4.11).

(2) On the deposition of the Co monolayer there is a large increase in both Kerr rotation
and ellipticity. This is several times greater than one would expect on the basis of the
magneto-optical properties of Co alone and is a consequence of the polarization of the Pd
layer lying below the Co.
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Figure 5. Measured and calculated polar Kerr rotation and ellipticity observed during the
continuous deposition of three Co–Pd bi-layers on a Pd buffer layer on glass.

(3) On deposition of the Pd, following the Co, there is an initial increase in magneto-optic
signal that reaches maximum amplitude before reducing towards zero. This initial increase
is a direct consequence of the polarization of the Pd atoms at the upper Co interface. As
further Pd atoms are added to the growing layer their magnetic moment is reduced and
eventually becomes zero as more atoms are added. Owing to the optical absorption of the
Pd the overall Kerr effect is reduced towards zero.

The continuous curves of figure 5 are direct evidence of the inhomogeneous polarization of Pd
atoms at interfaces with Co. Furthermore, the markers are points calculated using this analysis
using the fundamental Q-parameters determined from fitting the curves in the first bi-layer.
These parameters were obtained on the assumption that the polarization and, therefore, the
Q-parameter of the Pd, decreased exponentially with distance from the interfaces with Co. The
results for Co and Pd are Q1 = −0.0126 + i0.0007 and Q2 = −0.0025 + i0.020, respectively.
In addition, the decay constant was found to be β = 0.11 nm−1. The excellence of the
agreement between the fitted and experimental curves and the resulting information relating to
the fundamental parameters and spatial variation of the magnetic moment of the Pd atoms fully
illustrates the usefulness of this analysis. To illustrate further the value of such formulations
and the knowledge of various parameters we proceed, using this information, to investigate the



7744 R Atkinson

 

 

 

 

 

 

 

 

 

 

 

10

11

12

13

14

15

0 1 2 3

Pd Thickness (nm)

eQ  

Figure 6. Variation of the modulus of the effective magneto-optic parameter of a Co–Pd multilayer
as a function of Pd thickness.

optimization of the magneto-optic performance of inhomogeneously magnetized multilayers,
specifically using the Co–Pd system as an example.

4. Optimization of multilayer performance

In fabricating magnetic multilayer systems for the purposes of magneto-optic recording it is
clearly essential to determine the optimum thickness of each elemental layer that will result in
the maximum effective magneto-optic parameter of the whole. It should be noted that although
the Q-parameter may vary on the nanometre scale, the system as a whole may be regarded as
having an effective Q-parameter and refractive index provided each individual layer satisfies
the condition |nd| � λ/2π [19]. In the simple case of a system with homogeneous refractive
index it can be shown from [19] that the effective Q-parameter is given by the spatial average

Qe = 1

p

∫ p

0
Q(z) dz. (34)

If we assume the practical necessity of a single monolayer of Co (d1 = 0.3 nm), in order to
polarize the Pd, it remains to determine the thickness of the Pd layer that, when sandwiched
between two Co layers, will provide a maximum value of the modulus of the effective
Q-parameter. It follows logically that the material properties of the whole multilayer system
will be the same as each bi-layer. Assuming the spatial variation given by equation (28) the
effective value of Qe for the bi-layer is given by

Qe = 1

p

[
Q1d1 + Q2

∫ d2

0

cosh β(d2/2 − z)

cosh βd22
dz

]
. (35)

Hence,

|Qe| = 1

p

∣∣∣∣
[
Q1d1 + Q2

2

β
tanh(βd2/2)

]∣∣∣∣. (36)
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Using equation (36) and the physical data obtained for Co and Pd, the variation of the modulus
of the effective Q-parameter as a function of the thickness of the Pd layer can be calculated.
The result is given in figure 6 for a Co layer thickness of 0.3 nm. Clearly the modulus of the
effective magneto-optic parameter reaches a maximum corresponding to a Pd layer thickness
of 1 nm which closely coincides with that typically found by more tedious empirical methods.
This fact fully justifies the analysis that is presented here and verifies the applicability of the
fundamental material parameters derived previously from the in situ magneto-optical data.

5. Summary

An analysis has been presented for dealing with the magneto-optical properties of thin film
systems that have inhomogeneously magnetized layers, where the magnetization varies in a
direction perpendicular to the film surfaces. It has been assumed that the optical properties
can be considered to be homogeneous throughout and whilst this condition is restrictive it
is applicable to several multilayered media that are being considered for the purposes of
magneto-optic recording. Calculations are based on classical electrodynamic theory using
parameters that take into consideration the fundamental thin film optical and magneto-optical
constants and their spatial variation in the media. Several simple and relevant cases have been
considered in detail which can be compared with existing formulations where the magnetization
is homogeneous or where inhomogeneous systems are typical of real systems such as that of
the Co–Pd multilayer. The results of an in situ experiment monitoring the growth of Co–Pd
multilayers by optical and magneto-optical methods have been summarized and compared
with calculations and used to derive fundamental material parameters of both homogeneous
and inhomogeneous layers. Finally, these material parameters have been used to determine the
optimum structures that will lead to maximum performance for the purposes of magneto-optic
recording readout.
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